Cargando…
Adversarially Training MCMC with Non-Volume-Preserving Flows
Recently, flow models parameterized by neural networks have been used to design efficient Markov chain Monte Carlo (MCMC) transition kernels. However, inefficient utilization of gradient information of the target distribution or the use of volume-preserving flows limits their performance in sampling...
Autores principales: | Liu, Shaofan, Sun, Shiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947447/ https://www.ncbi.nlm.nih.gov/pubmed/35327925 http://dx.doi.org/10.3390/e24030415 |
Ejemplares similares
-
Accelerating MCMC algorithms
por: Robert, Christian P., et al.
Publicado: (2018) -
Fast Compression of MCMC Output
por: Chopin, Nicolas, et al.
Publicado: (2021) -
Discretization and MCMC convergence assessment
por: Robert, Christian
Publicado: (1998) -
fmcmc: A friendly MCMC framework
por: Vega Yon, George G, et al.
Publicado: (2019) -
Reversible Jump MCMC for Deghosting in MSPSR Systems †
por: Kulmon, Pavel
Publicado: (2021)