Cargando…
DNN Intellectual Property Extraction Using Composite Data
As state-of-the-art deep neural networks are being deployed at the core level of increasingly large numbers of AI-based products and services, the incentive for “copying them” (i.e., their intellectual property, manifested through the knowledge that is encapsulated in them) either by adversaries or...
Autores principales: | Mosafi, Itay, David, Eli (Omid), Altshuler, Yaniv, Netanyahu, Nathan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947501/ https://www.ncbi.nlm.nih.gov/pubmed/35327860 http://dx.doi.org/10.3390/e24030349 |
Ejemplares similares
-
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
por: Cohen, Ido, et al.
Publicado: (2019) -
DNN based reliability evaluation for telemedicine data
por: Shin, Dong Ah, et al.
Publicado: (2022) -
Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data
por: Joo, Chonghyo, et al.
Publicado: (2022) -
DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
por: Mao, Yingchi, et al.
Publicado: (2019) -
Systematic Generation of Diverse Benchmarks for DNN Verification
por: Xu, Dong, et al.
Publicado: (2020)