Cargando…
A Voting-Based Ensemble Deep Learning Method Focused on Multi-Step Prediction of Food Safety Risk Levels: Applications in Hazard Analysis of Heavy Metals in Grain Processing Products
Grain processing products constitute an essential component of the human diet and are among the main sources of heavy metal intake. Therefore, a systematic assessment of risk factors and early-warning systems are vital to control heavy metal hazards in grain processing products. In this study, we es...
Autores principales: | Wang, Zuzheng, Wu, Zhixiang, Zou, Minke, Wen, Xin, Wang, Zheng, Li, Yuanzhang, Zhang, Qingchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947666/ https://www.ncbi.nlm.nih.gov/pubmed/35327246 http://dx.doi.org/10.3390/foods11060823 |
Ejemplares similares
-
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
A voting-based ensemble deep learning method focusing on image augmentation and preprocessing variations for tuberculosis detection
por: Tasci, Erdal, et al.
Publicado: (2021) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Osamor, Victor Chukwudi, et al.
Publicado: (2021) -
A Selective Voting Convex-Hull Ensemble Procedure for Personalized Medicine
por: Nagarajan, Radhakrishnan, et al.
Publicado: (2012) -
Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization
por: Mohammedqasim, Hayder, et al.
Publicado: (2022)