Cargando…
An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data
This paper shows if and how the predictability and complexity of stock market data changed over the last half-century and what influence the M1 money supply has. We use three different machine learning algorithms, i.e., a stochastic gradient descent linear regression, a lasso regression, and an XGBo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947671/ https://www.ncbi.nlm.nih.gov/pubmed/35327843 http://dx.doi.org/10.3390/e24030332 |
_version_ | 1784674495070470144 |
---|---|
author | Raubitzek, Sebastian Neubauer, Thomas |
author_facet | Raubitzek, Sebastian Neubauer, Thomas |
author_sort | Raubitzek, Sebastian |
collection | PubMed |
description | This paper shows if and how the predictability and complexity of stock market data changed over the last half-century and what influence the M1 money supply has. We use three different machine learning algorithms, i.e., a stochastic gradient descent linear regression, a lasso regression, and an XGBoost tree regression, to test the predictability of two stock market indices, the Dow Jones Industrial Average and the NASDAQ (National Association of Securities Dealers Automated Quotations) Composite. In addition, all data under study are discussed in the context of a variety of measures of signal complexity. The results of this complexity analysis are then linked with the machine learning results to discover trends and correlations between predictability and complexity. Our results show a decrease in predictability and an increase in complexity for more recent years. We find a correlation between approximate entropy, sample entropy, and the predictability of the employed machine learning algorithms on the data under study. This link between the predictability of machine learning algorithms and the mentioned entropy measures has not been shown before. It should be considered when analyzing and predicting complex time series data, e.g., stock market data, to e.g., identify regions of increased predictability. |
format | Online Article Text |
id | pubmed-8947671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89476712022-03-25 An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data Raubitzek, Sebastian Neubauer, Thomas Entropy (Basel) Article This paper shows if and how the predictability and complexity of stock market data changed over the last half-century and what influence the M1 money supply has. We use three different machine learning algorithms, i.e., a stochastic gradient descent linear regression, a lasso regression, and an XGBoost tree regression, to test the predictability of two stock market indices, the Dow Jones Industrial Average and the NASDAQ (National Association of Securities Dealers Automated Quotations) Composite. In addition, all data under study are discussed in the context of a variety of measures of signal complexity. The results of this complexity analysis are then linked with the machine learning results to discover trends and correlations between predictability and complexity. Our results show a decrease in predictability and an increase in complexity for more recent years. We find a correlation between approximate entropy, sample entropy, and the predictability of the employed machine learning algorithms on the data under study. This link between the predictability of machine learning algorithms and the mentioned entropy measures has not been shown before. It should be considered when analyzing and predicting complex time series data, e.g., stock market data, to e.g., identify regions of increased predictability. MDPI 2022-02-25 /pmc/articles/PMC8947671/ /pubmed/35327843 http://dx.doi.org/10.3390/e24030332 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Raubitzek, Sebastian Neubauer, Thomas An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title | An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title_full | An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title_fullStr | An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title_full_unstemmed | An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title_short | An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data |
title_sort | exploratory study on the complexity and machine learning predictability of stock market data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947671/ https://www.ncbi.nlm.nih.gov/pubmed/35327843 http://dx.doi.org/10.3390/e24030332 |
work_keys_str_mv | AT raubitzeksebastian anexploratorystudyonthecomplexityandmachinelearningpredictabilityofstockmarketdata AT neubauerthomas anexploratorystudyonthecomplexityandmachinelearningpredictabilityofstockmarketdata AT raubitzeksebastian exploratorystudyonthecomplexityandmachinelearningpredictabilityofstockmarketdata AT neubauerthomas exploratorystudyonthecomplexityandmachinelearningpredictabilityofstockmarketdata |