Cargando…
Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans
We map single energy CT (SECT) scans to synthetic dual-energy CT (synth-DECT) material density iodine (MDI) scans using deep learning (DL) and demonstrate their value for liver segmentation. A 2D pix2pix (P2P) network was trained on 100 abdominal DECT scans to infer synth-DECT MDI scans from SECT sc...
Autores principales: | Mahmood, Usman, Bates, David D. B., Erdi, Yusuf E., Mannelli, Lorenzo, Corrias, Giuseppe, Kanan, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947702/ https://www.ncbi.nlm.nih.gov/pubmed/35328225 http://dx.doi.org/10.3390/diagnostics12030672 |
Ejemplares similares
-
Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems
por: Mahmood, Usman, et al.
Publicado: (2021) -
Quality control of radiomic features using 3D-printed CT phantoms
por: Mahmood, Usman, et al.
Publicado: (2021) -
Malignant transformation of glucagonoma with SPECT/CT In-111 OctreoScan features: A case report
por: Corrias, Giuseppe, et al.
Publicado: (2017) -
Radiation dose reduction at a price: the effectiveness of a male gonadal shield during helical CT scans
por: Dauer, Lawrence T, et al.
Publicado: (2007) -
The Influence of a Coherent Annotation and Synthetic Addition of Lung Nodules for Lung Segmentation in CT Scans
por: Sousa, Joana, et al.
Publicado: (2022)