Cargando…
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding
With the development of technology and the rise of the meta-universe concept, the brain-computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the performance of the decod...
Autores principales: | Yang, Jun, Gao, Siheng, Shen, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947711/ https://www.ncbi.nlm.nih.gov/pubmed/35327887 http://dx.doi.org/10.3390/e24030376 |
Ejemplares similares
-
A Parallel Feature Fusion Network Combining GRU and CNN for Motor Imagery EEG Decoding
por: Gao, Siheng, et al.
Publicado: (2022) -
Data augmentation strategies for EEG-based motor imagery decoding
por: George, Olawunmi, et al.
Publicado: (2022) -
A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding
por: Liu, Tianjun, et al.
Publicado: (2021) -
Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain–Computer Interfaces by Using Multi-Branch CNN
por: Chowdhury, Radia Rayan, et al.
Publicado: (2023) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012)