Cargando…
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
We present a coupled variational autoencoder (VAE) method, which improves the accuracy and robustness of the model representation of handwritten numeral images. The improvement is measured in both increasing the likelihood of the reconstructed images and in reducing divergence between the posterior...
Autores principales: | Cao, Shichen, Li, Jingjing, Nelson, Kenric P., Kon, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947750/ https://www.ncbi.nlm.nih.gov/pubmed/35327933 http://dx.doi.org/10.3390/e24030423 |
Ejemplares similares
-
PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction
por: Dean, Scott N., et al.
Publicado: (2021) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
bmVAE: a variational autoencoder method for clustering single-cell mutation data
por: Yan, Jiaqian, et al.
Publicado: (2022) -
VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder
por: Samanta, Soumitra, et al.
Publicado: (2020) -
Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design
por: Mak, Hugo Wai Leung, et al.
Publicado: (2023)