Cargando…
A Boundary-Information-Based Oversampling Approach to Improve Learning Performance for Imbalanced Datasets
Oversampling is the most popular data preprocessing technique. It makes traditional classifiers available for learning from imbalanced data. Through an overall review of oversampling techniques (oversamplers), we find that some of them can be regarded as danger-information-based oversamplers (DIBOs)...
Autores principales: | Li, Der-Chiang, Shi, Qi-Shi, Lin, Yao-San, Lin, Liang-Sian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947752/ https://www.ncbi.nlm.nih.gov/pubmed/35327833 http://dx.doi.org/10.3390/e24030322 |
Ejemplares similares
-
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021) -
Iterative Nearest Neighborhood Oversampling in Semisupervised Learning from Imbalanced Data
por: Li, Fengqi, et al.
Publicado: (2013) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of Covid-19
por: Wibowo, Prasetyo, et al.
Publicado: (2022)