Cargando…

A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes

In this paper, we propose a new positivity-preserving finite volume scheme with fixed stencils for the nonequilibrium radiation diffusion equations on distorted meshes. This scheme is used to simulate the equations on meshes with both the cell-centered and cell-vertex unknowns. The cell-centered unk...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Di, Peng, Gang, Gao, Zhiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947757/
https://www.ncbi.nlm.nih.gov/pubmed/35327893
http://dx.doi.org/10.3390/e24030382
Descripción
Sumario:In this paper, we propose a new positivity-preserving finite volume scheme with fixed stencils for the nonequilibrium radiation diffusion equations on distorted meshes. This scheme is used to simulate the equations on meshes with both the cell-centered and cell-vertex unknowns. The cell-centered unknowns are the primary unknowns, and the element vertex unknowns are taken as the auxiliary unknowns, which can be calculated by interpolation algorithm. With the nonlinear two-point flux approximation, the interpolation algorithm is not required to be positivity-preserving. Besides, the scheme has a fixed stencil and is locally conservative. The Anderson acceleration is used for the Picard method to solve the nonlinear systems efficiently. Several numerical results are also given to illustrate the efficiency and strong positivity-preserving quality of the scheme.