Cargando…

Real-Time Gender Recognition for Juvenile and Adult Faces

Facial gender recognition is a crucial research topic due to its comprehensive use cases, including a demographic gender survey, visitor profile identification, targeted advertisement, access control, security, and surveillance from CCTV. For these real-time applications, the face of a person can be...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Sandeep Kumar, Yesuf, Seid Hassen, Nain, Neeta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947889/
https://www.ncbi.nlm.nih.gov/pubmed/35341170
http://dx.doi.org/10.1155/2022/1503188
_version_ 1784674544398630912
author Gupta, Sandeep Kumar
Yesuf, Seid Hassen
Nain, Neeta
author_facet Gupta, Sandeep Kumar
Yesuf, Seid Hassen
Nain, Neeta
author_sort Gupta, Sandeep Kumar
collection PubMed
description Facial gender recognition is a crucial research topic due to its comprehensive use cases, including a demographic gender survey, visitor profile identification, targeted advertisement, access control, security, and surveillance from CCTV. For these real-time applications, the face of a person can be oriented to any angle from the camera axis, and the person can be of any age group, including juveniles. A child's face consists of immature craniofacial feature points in texture and edge compared to an adult face, making it very hard to recognize gender using the child's face. Real-word faces captured in an unconstrained environment make the gender prediction system more complex to identify correctly due to orientation. These factors reduce the accuracy of the existing state-of-the-art models developed so far for real-time facial gender prediction. This paper presents the novelty of facial gender recognition for juveniles, adults, and unconstrained-oriented faces. The progressive calibration network (PCN) detects rotation-invariant faces in the proposed model. Then, a Gabor filter is applied to extract unique edge and texture features from the detected face. The Gabor filter is invariant to illumination and produces texture and edge features with redundant feature coefficients in large dimensions. Gabor has drawbacks such as redundancy and a large dimension resolved by the proposed meanDWT feature optimization method, which optimizes the system's accuracy, the size of the model, and computational timing. The proposed feature engineering model is classified with different classifiers such as Naïve Bayes, Logistic Regression, SVM with linear, and RBF kernel. Its results are compared with the state-of-the-art techniques; detailed experimental analysis is presented and concluded to support the argument. We also present a review of approaches based on conventional and deep learning methods with their pros and cons for facial gender recognition on different datasets available for facial gender recognition.
format Online
Article
Text
id pubmed-8947889
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-89478892022-03-25 Real-Time Gender Recognition for Juvenile and Adult Faces Gupta, Sandeep Kumar Yesuf, Seid Hassen Nain, Neeta Comput Intell Neurosci Research Article Facial gender recognition is a crucial research topic due to its comprehensive use cases, including a demographic gender survey, visitor profile identification, targeted advertisement, access control, security, and surveillance from CCTV. For these real-time applications, the face of a person can be oriented to any angle from the camera axis, and the person can be of any age group, including juveniles. A child's face consists of immature craniofacial feature points in texture and edge compared to an adult face, making it very hard to recognize gender using the child's face. Real-word faces captured in an unconstrained environment make the gender prediction system more complex to identify correctly due to orientation. These factors reduce the accuracy of the existing state-of-the-art models developed so far for real-time facial gender prediction. This paper presents the novelty of facial gender recognition for juveniles, adults, and unconstrained-oriented faces. The progressive calibration network (PCN) detects rotation-invariant faces in the proposed model. Then, a Gabor filter is applied to extract unique edge and texture features from the detected face. The Gabor filter is invariant to illumination and produces texture and edge features with redundant feature coefficients in large dimensions. Gabor has drawbacks such as redundancy and a large dimension resolved by the proposed meanDWT feature optimization method, which optimizes the system's accuracy, the size of the model, and computational timing. The proposed feature engineering model is classified with different classifiers such as Naïve Bayes, Logistic Regression, SVM with linear, and RBF kernel. Its results are compared with the state-of-the-art techniques; detailed experimental analysis is presented and concluded to support the argument. We also present a review of approaches based on conventional and deep learning methods with their pros and cons for facial gender recognition on different datasets available for facial gender recognition. Hindawi 2022-03-17 /pmc/articles/PMC8947889/ /pubmed/35341170 http://dx.doi.org/10.1155/2022/1503188 Text en Copyright © 2022 Sandeep Kumar Gupta et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Gupta, Sandeep Kumar
Yesuf, Seid Hassen
Nain, Neeta
Real-Time Gender Recognition for Juvenile and Adult Faces
title Real-Time Gender Recognition for Juvenile and Adult Faces
title_full Real-Time Gender Recognition for Juvenile and Adult Faces
title_fullStr Real-Time Gender Recognition for Juvenile and Adult Faces
title_full_unstemmed Real-Time Gender Recognition for Juvenile and Adult Faces
title_short Real-Time Gender Recognition for Juvenile and Adult Faces
title_sort real-time gender recognition for juvenile and adult faces
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947889/
https://www.ncbi.nlm.nih.gov/pubmed/35341170
http://dx.doi.org/10.1155/2022/1503188
work_keys_str_mv AT guptasandeepkumar realtimegenderrecognitionforjuvenileandadultfaces
AT yesufseidhassen realtimegenderrecognitionforjuvenileandadultfaces
AT nainneeta realtimegenderrecognitionforjuvenileandadultfaces