Cargando…
Legal Text Recognition Using LSTM-CRF Deep Learning Model
In legal texts, named entity recognition (NER) is researched using deep learning models. First, the bidirectional (Bi)-long short-term memory (LSTM)-conditional random field (CRF) model for studying NER in legal texts is established. Second, different annotation methods are used to compare and analy...
Autores principales: | Xu, Hesheng, Hu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947905/ https://www.ncbi.nlm.nih.gov/pubmed/35341203 http://dx.doi.org/10.1155/2022/9933929 |
Ejemplares similares
-
Retracted: Legal Text Recognition Using LSTM-CRF Deep Learning Model
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF
por: Tang, Buzhou, et al.
Publicado: (2019) -
English Grammar Detection Based on LSTM-CRF Machine Learning Model
por: Wu, Liqin, et al.
Publicado: (2021) -
Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network
por: Kantipudi, MVV Prasad, et al.
Publicado: (2021) -
Retracted: English Grammar Detection Based on LSTM-CRF Machine Learning Model
por: Intelligence and Neuroscience, Computational
Publicado: (2023)