Cargando…
Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study
Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947946/ https://www.ncbi.nlm.nih.gov/pubmed/35350595 http://dx.doi.org/10.1016/j.bspc.2022.103662 |
_version_ | 1784674556780216320 |
---|---|
author | Al-Areqi, Farid Konyar, Mehmet Zeki |
author_facet | Al-Areqi, Farid Konyar, Mehmet Zeki |
author_sort | Al-Areqi, Farid |
collection | PubMed |
description | Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT) images of the lung; 349 Covid-19 (positives) and 397 non-Covid-19 (negative) are used. Gray-level texture, shape and first order statistical features were extracted from the images. The feature vector for model training is constructed with one feature group or combination of more than one group. We then classified with Support Vector Machine, Random Forest, k-nearest neighbor and XGBoost classifier models. The hyperparameter of the models were controlled by the tuning test. Experimental results obtained with 10-fold cross-validation. The results of cross-validation verified with the additionally independent test. The best overall accuracy was 98.65% with first order statistics features classified with XGBoost. In the gray level features, the best individual results given by GLSZM as 81.25%, and the best combination result is with GLDM, GLRLM and GLSZM features as 85.52%. An important finding of this paper is that, for Covid-19 classification, the shape and first order statistics features are more valuable than gray level features. The proposed results compared with the literature studies under some Covid-19 dataset for accuracy, precision, sensitivity and F1-score metrics. Also, the literature studies which used the different Covid-19 dataset were compared with the proposed study. Our results have the significant superiority when compared with the literature studies. |
format | Online Article Text |
id | pubmed-8947946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89479462022-03-25 Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study Al-Areqi, Farid Konyar, Mehmet Zeki Biomed Signal Process Control Article Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT) images of the lung; 349 Covid-19 (positives) and 397 non-Covid-19 (negative) are used. Gray-level texture, shape and first order statistical features were extracted from the images. The feature vector for model training is constructed with one feature group or combination of more than one group. We then classified with Support Vector Machine, Random Forest, k-nearest neighbor and XGBoost classifier models. The hyperparameter of the models were controlled by the tuning test. Experimental results obtained with 10-fold cross-validation. The results of cross-validation verified with the additionally independent test. The best overall accuracy was 98.65% with first order statistics features classified with XGBoost. In the gray level features, the best individual results given by GLSZM as 81.25%, and the best combination result is with GLDM, GLRLM and GLSZM features as 85.52%. An important finding of this paper is that, for Covid-19 classification, the shape and first order statistics features are more valuable than gray level features. The proposed results compared with the literature studies under some Covid-19 dataset for accuracy, precision, sensitivity and F1-score metrics. Also, the literature studies which used the different Covid-19 dataset were compared with the proposed study. Our results have the significant superiority when compared with the literature studies. Elsevier Ltd. 2022-07 2022-03-25 /pmc/articles/PMC8947946/ /pubmed/35350595 http://dx.doi.org/10.1016/j.bspc.2022.103662 Text en © 2022 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Al-Areqi, Farid Konyar, Mehmet Zeki Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title | Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title_full | Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title_fullStr | Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title_full_unstemmed | Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title_short | Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study |
title_sort | effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: a high accuracy classification study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947946/ https://www.ncbi.nlm.nih.gov/pubmed/35350595 http://dx.doi.org/10.1016/j.bspc.2022.103662 |
work_keys_str_mv | AT alareqifarid effectivenessevaluationofdifferentfeatureextractionmethodsforclassificationofcovid19fromcomputedtomographyimagesahighaccuracyclassificationstudy AT konyarmehmetzeki effectivenessevaluationofdifferentfeatureextractionmethodsforclassificationofcovid19fromcomputedtomographyimagesahighaccuracyclassificationstudy |