Cargando…
Data-driven comparison of multiple high-dimensional single-cell expression profiles
Comparing multiple single-cell expression datasets such as cytometry and scRNA-seq data between case and control donors provides information to elucidate the mechanisms of disease. We propose a completely data-driven computational biological method for this task. This overcomes the challenges of con...
Autores principales: | Okada, Daigo, Cheng, Jian Hao, Zheng, Cheng, Yamada, Ryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948086/ https://www.ncbi.nlm.nih.gov/pubmed/34719682 http://dx.doi.org/10.1038/s10038-021-00989-9 |
Ejemplares similares
-
Decomposition of a set of distributions in extended exponential family form for distinguishing multiple oligo-dimensional marker expression profiles of single-cell populations and visualizing their dynamics
por: Okada, Daigo, et al.
Publicado: (2020) -
Data-driven identification and classification of nonlinear aging patterns reveals the landscape of associations between DNA methylation and aging
por: Okada, Daigo, et al.
Publicado: (2023) -
Mathematical model for the relationship between single-cell and bulk gene expression to clarify the interpretation of bulk gene expression data
por: Okada, Daigo, et al.
Publicado: (2022) -
Delving into gene-set multiplex networks facilitated by a k-nearest neighbor-based measure of similarity
por: Zheng, Cheng, et al.
Publicado: (2023) -
Interpretation of omics data analyses
por: Yamada, Ryo, et al.
Publicado: (2020)