Cargando…
Yeast-based production and in situ purification of acetaldehyde
Acetaldehyde is a platform chemical with a production volume of more than 1 Mt/a, but is chiefly synthesized from petrochemical feedstocks. We propose the fermentative conversion of glucose towards acetaldehyde via genetically modified S. cerevisiae. This allows for ethanol-free bioactaldehyde produ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948146/ https://www.ncbi.nlm.nih.gov/pubmed/35137261 http://dx.doi.org/10.1007/s00449-022-02697-w |
Sumario: | Acetaldehyde is a platform chemical with a production volume of more than 1 Mt/a, but is chiefly synthesized from petrochemical feedstocks. We propose the fermentative conversion of glucose towards acetaldehyde via genetically modified S. cerevisiae. This allows for ethanol-free bioactaldehyde production. Exploiting the high volatility of the product, in situ gas stripping in an aerated reactor is inevitable and crucial due to the respiratory toxicity effects of the acetaldehyde overproduction. We devise a lab-scale setup for the recovery of the product from the off-gas. Water was chosen as a suitable solvent and the Henry coefficient of acetaldehyde in water was validated experimentally. Based on an experimentally verified capture efficiency of 75%, an acetaldehyde production rate of over 100 mg/g/h was reached in 200 mL lab-scale fermentations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00449-022-02697-w. |
---|