Cargando…
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies
PURPOSE: The registration of medical images often suffers from missing correspondences due to inter-patient variations, pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valuable information. Detecting non-corresponding regions simu...
Autores principales: | Andresen, Julia, Kepp, Timo, Ehrhardt, Jan, Burchard, Claus von der, Roider, Johann, Handels, Heinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948150/ https://www.ncbi.nlm.nih.gov/pubmed/35239133 http://dx.doi.org/10.1007/s11548-022-02577-4 |
Ejemplares similares
-
Image registration and appearance adaptation in non-correspondent image regions for new MS lesions detection
por: Andresen, Julia, et al.
Publicado: (2022) -
Chronological Registration of OCT and Autofluorescence Findings in CSCR: Two Distinct Patterns in Disease Course
por: Santarossa, Monty, et al.
Publicado: (2022) -
Unsupervised Deep Learning Registration of Uterine Cervix Sequence Images
por: Guo, Peng, et al.
Publicado: (2022) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023) -
Selective Retina Therapy Reduces Bruch's Membrane Thickness and Retinal Pigment Epithelium Pathology in Age-Related Macular Degeneration Mouse Models
por: Tode, Jan, et al.
Publicado: (2019)