Cargando…
Comparison of observer based methods for source localisation in complex networks
In recent years, research on methods for locating a source of spreading phenomena in complex networks has seen numerous advances. Such methods can be applied not only to searching for the “patient zero” in epidemics, but also finding the true sources of false or malicious messages circulating in the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948209/ https://www.ncbi.nlm.nih.gov/pubmed/35332184 http://dx.doi.org/10.1038/s41598-022-09031-0 |
Sumario: | In recent years, research on methods for locating a source of spreading phenomena in complex networks has seen numerous advances. Such methods can be applied not only to searching for the “patient zero” in epidemics, but also finding the true sources of false or malicious messages circulating in the online social networks. Many methods for solving this problem have been established and tested in various circumstances. Yet, we still lack reviews that would include a direct comparison of efficiency of these methods. In this paper, we provide a thorough comparison of several observer-based methods for source localisation on complex networks. All methods use information about the exact time of spread arrival at a pre-selected group of vertices called observers. We investigate how the precision of the studied methods depends on the network topology, density of observers, infection rate, and observers’ placement strategy. The direct comparison between methods allows for an informed choice of the methods for applications or further research. We find that the Pearson correlation based method and the method based on the analysis of multiple paths are the most effective in networks with synthetic or real topologies. The former method dominates when the infection rate is low; otherwise, the latter method takes over. |
---|