Cargando…
Multimodal microwheel swarms for targeting in three-dimensional networks
Microscale bots intended for targeted drug delivery must move through three-dimensional (3D) environments that include bifurcations, inclined surfaces, and curvature. In previous studies, we have shown that magnetically actuated colloidal microwheels (µwheels) reversibly assembled from superparamagn...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948265/ https://www.ncbi.nlm.nih.gov/pubmed/35332242 http://dx.doi.org/10.1038/s41598-022-09177-x |
Sumario: | Microscale bots intended for targeted drug delivery must move through three-dimensional (3D) environments that include bifurcations, inclined surfaces, and curvature. In previous studies, we have shown that magnetically actuated colloidal microwheels (µwheels) reversibly assembled from superparamagnetic beads can translate rapidly and be readily directed. Here we show that, at high concentrations, µwheels assemble into swarms that, depending on applied magnetic field actuation patterns, can be designed to transport cargo, climb steep inclines, spread over large areas, or provide mechanical action. We test the ability of these multimodal swarms to navigate through complex, inclined microenvironments by characterizing the translation and dispersion of individual µwheels and swarms of µwheels on steeply inclined and flat surfaces. Swarms are then studied within branching 3D vascular models with multiple turns where good targeting efficiencies are achieved over centimeter length scales. With this approach, we present a readily reconfigurable swarm platform capable of navigating through 3D microenvironments. |
---|