Cargando…

Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells

Morphology optimization of active layer plays a critical role in improving the performance of organic solar cells (OSCs). In this work, a volatile solid additive‐assisted sequential deposition (SD) strategy is reported to regulate the molecular order and phase separation in solid state. The OSC adop...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Jianqiang, Yang, Qianguang, Oh, Jiyeon, Chen, Shanshan, Odunmbaku, George Omololu, Ouedraogo, Nabonswendé Aïda Nadège, Yang, Changduk, Sun, Kuan, Lu, Shirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948555/
https://www.ncbi.nlm.nih.gov/pubmed/35072347
http://dx.doi.org/10.1002/advs.202105347
_version_ 1784674680798445568
author Qin, Jianqiang
Yang, Qianguang
Oh, Jiyeon
Chen, Shanshan
Odunmbaku, George Omololu
Ouedraogo, Nabonswendé Aïda Nadège
Yang, Changduk
Sun, Kuan
Lu, Shirong
author_facet Qin, Jianqiang
Yang, Qianguang
Oh, Jiyeon
Chen, Shanshan
Odunmbaku, George Omololu
Ouedraogo, Nabonswendé Aïda Nadège
Yang, Changduk
Sun, Kuan
Lu, Shirong
author_sort Qin, Jianqiang
collection PubMed
description Morphology optimization of active layer plays a critical role in improving the performance of organic solar cells (OSCs). In this work, a volatile solid additive‐assisted sequential deposition (SD) strategy is reported to regulate the molecular order and phase separation in solid state. The OSC adopts polymer donor D18‐Cl and acceptor N3 as active layer, as well as 1,4‐diiodobenzene (DIB) as volatile additive. Compared to the D18‐Cl:N3 (one‐time deposition of mixture) and D18‐Cl/N3 (SD) platforms, the D18‐Cl/N3(DIB) device based on DIB‐assisted SD method exhibits a finer phase separation with greatly enhanced molecular crystallinity. The optimal morphology delivers superior charge transport and extraction, offering a champion power conversion efficiency of 18.42% with significantly enhanced short‐circuit current density (J (sc)) of 27.18 mA cm(−2) and fill factor of 78.8%. This is one of the best performances in binary SD OSCs to date. Angle‐dependent grazing‐incidence wide‐angle X‐ray scattering technique effectively reveals the vertical phase separation and molecular crystallinity of the active layer. This work demonstrates the combination of volatile solid additive and sequential deposition is an effective method to develop high‐performance OSCs.
format Online
Article
Text
id pubmed-8948555
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89485552022-03-29 Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells Qin, Jianqiang Yang, Qianguang Oh, Jiyeon Chen, Shanshan Odunmbaku, George Omololu Ouedraogo, Nabonswendé Aïda Nadège Yang, Changduk Sun, Kuan Lu, Shirong Adv Sci (Weinh) Research Articles Morphology optimization of active layer plays a critical role in improving the performance of organic solar cells (OSCs). In this work, a volatile solid additive‐assisted sequential deposition (SD) strategy is reported to regulate the molecular order and phase separation in solid state. The OSC adopts polymer donor D18‐Cl and acceptor N3 as active layer, as well as 1,4‐diiodobenzene (DIB) as volatile additive. Compared to the D18‐Cl:N3 (one‐time deposition of mixture) and D18‐Cl/N3 (SD) platforms, the D18‐Cl/N3(DIB) device based on DIB‐assisted SD method exhibits a finer phase separation with greatly enhanced molecular crystallinity. The optimal morphology delivers superior charge transport and extraction, offering a champion power conversion efficiency of 18.42% with significantly enhanced short‐circuit current density (J (sc)) of 27.18 mA cm(−2) and fill factor of 78.8%. This is one of the best performances in binary SD OSCs to date. Angle‐dependent grazing‐incidence wide‐angle X‐ray scattering technique effectively reveals the vertical phase separation and molecular crystallinity of the active layer. This work demonstrates the combination of volatile solid additive and sequential deposition is an effective method to develop high‐performance OSCs. John Wiley and Sons Inc. 2022-01-24 /pmc/articles/PMC8948555/ /pubmed/35072347 http://dx.doi.org/10.1002/advs.202105347 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Qin, Jianqiang
Yang, Qianguang
Oh, Jiyeon
Chen, Shanshan
Odunmbaku, George Omololu
Ouedraogo, Nabonswendé Aïda Nadège
Yang, Changduk
Sun, Kuan
Lu, Shirong
Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title_full Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title_fullStr Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title_full_unstemmed Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title_short Volatile Solid Additive‐Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells
title_sort volatile solid additive‐assisted sequential deposition enables 18.42% efficiency in organic solar cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948555/
https://www.ncbi.nlm.nih.gov/pubmed/35072347
http://dx.doi.org/10.1002/advs.202105347
work_keys_str_mv AT qinjianqiang volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT yangqianguang volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT ohjiyeon volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT chenshanshan volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT odunmbakugeorgeomololu volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT ouedraogonabonswendeaidanadege volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT yangchangduk volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT sunkuan volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells
AT lushirong volatilesolidadditiveassistedsequentialdepositionenables1842efficiencyinorganicsolarcells