Cargando…
No-Reference Video Quality Assessment Using Multi-Pooled, Saliency Weighted Deep Features and Decision Fusion
With the constantly growing popularity of video-based services and applications, no-reference video quality assessment (NR-VQA) has become a very hot research topic. Over the years, many different approaches have been introduced in the literature to evaluate the perceptual quality of digital videos....
Autor principal: | Varga, Domonkos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948651/ https://www.ncbi.nlm.nih.gov/pubmed/35336380 http://dx.doi.org/10.3390/s22062209 |
Ejemplares similares
-
No-Reference Image Quality Assessment with Multi-Scale Orderless Pooling of Deep Features
por: Varga, Domonkos
Publicado: (2021) -
No-Reference Image Quality Assessment Based on the Fusion of Statistical and Perceptual Features
por: Varga, Domonkos
Publicado: (2020) -
No-Reference Video Quality Assessment Using the Temporal Statistics of Global and Local Image Features
por: Varga, Domonkos
Publicado: (2022) -
No-Reference Image Quality Assessment with Global Statistical Features
por: Varga, Domonkos
Publicado: (2021) -
Multi-Dimensional Feature Fusion Network for No-Reference Quality Assessment of In-the-Wild Videos
por: Jiang, Jiu, et al.
Publicado: (2021)