Cargando…

The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method

Kink deformation is often observed in materials with laminated layers. Graphite composed of stacked graphene layers has the unique laminated structure of carbon nanomaterials. In this study, we performed the interlayer deformation of graphite under compression using a simulation of molecular dynamic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Xiao-Wen, Shimizu, Shungo, Shi, Jin-Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948689/
https://www.ncbi.nlm.nih.gov/pubmed/35335716
http://dx.doi.org/10.3390/nano12060903
Descripción
Sumario:Kink deformation is often observed in materials with laminated layers. Graphite composed of stacked graphene layers has the unique laminated structure of carbon nanomaterials. In this study, we performed the interlayer deformation of graphite under compression using a simulation of molecular dynamics and proposed a differential geometrical method to evaluate the kink deformation. We employed “mean curvature” for the representativeness of the geometrical properties to explore the mechanism of kink deformation and the mechanical behaviors of graphite in nanoscale. The effect of the number of graphene layers and the lattice chirality of each graphene layer on kink deformation and stress–strain diagrams of compressed graphite are discussed in detail. The results showed that kink deformation occurred in compressed graphite when the strain was approximately equal to 0.02, and the potential energy of the compressed graphite proportionately increased with the increasing compressive strain. The proposed differential geometric method can not only be applied to kink deformation in nanoscale graphite, but could also be extended to solving and predicting interlayer deformation that occurs in micro- and macro-scale material structures with laminated layers.