Cargando…
HNF1A Mutations and Beta Cell Dysfunction in Diabetes
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of ty...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948720/ https://www.ncbi.nlm.nih.gov/pubmed/35328643 http://dx.doi.org/10.3390/ijms23063222 |
Sumario: | Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells. |
---|