Cargando…

Research on Weigh-in-Motion Algorithm of Vehicles Based on BSO-BP

Weigh-in-motion (WIM) systems are used to measure the weight of moving vehicles. Aiming at the problem of low accuracy of the WIM system, this paper proposes a WIM model based on the beetle swarm optimization (BSO) algorithm and the error back propagation (BP) neural network. Firstly, the structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Suan, Chen, Xing, Fu, Yaqiong, Xu, Hongwei, Hong, Kaixing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948758/
https://www.ncbi.nlm.nih.gov/pubmed/35336283
http://dx.doi.org/10.3390/s22062109
Descripción
Sumario:Weigh-in-motion (WIM) systems are used to measure the weight of moving vehicles. Aiming at the problem of low accuracy of the WIM system, this paper proposes a WIM model based on the beetle swarm optimization (BSO) algorithm and the error back propagation (BP) neural network. Firstly, the structure and principle of the WIM system used in this paper are analyzed. Secondly, the WIM signal is denoised and reconstructed by wavelet transform. Then, a BP neural network model optimized by BSO algorithm is established to process the WIM signal. Finally, the predictive ability of BP neural network models optimized by different algorithms are compared and conclusions are drawn. The experimental results show that the BSO-BP WIM model has fast convergence speed, high accuracy, the relative error of the maximum gross weight is 1.41%, and the relative error of the maximum axle weight is 6.69%.