Cargando…
Imbalanced Seismic Event Discrimination Using Supervised Machine Learning
The discrimination between earthquakes and artificial explosions is a significant issue in seismic analysis to efficiently prevent and respond to seismic events. However, the discrimination of seismic events is challenging due to the low incidence rate. Moreover, the similarity between earthquakes a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948764/ https://www.ncbi.nlm.nih.gov/pubmed/35336390 http://dx.doi.org/10.3390/s22062219 |
_version_ | 1784674731551621120 |
---|---|
author | Ahn, Hyeongki Kim, Sangkyeum Lee, Kyunghyun Choi, Ahyeong You, Kwanho |
author_facet | Ahn, Hyeongki Kim, Sangkyeum Lee, Kyunghyun Choi, Ahyeong You, Kwanho |
author_sort | Ahn, Hyeongki |
collection | PubMed |
description | The discrimination between earthquakes and artificial explosions is a significant issue in seismic analysis to efficiently prevent and respond to seismic events. However, the discrimination of seismic events is challenging due to the low incidence rate. Moreover, the similarity between earthquakes and artificial explosions with a local magnitude derives a nonlinear data distribution. To improve the discrimination accuracy, this paper proposes machine-learning-based seismic discrimination methods—support vector machine, naive Bayes, and logistic regression. Furthermore, to overcome the nonlinear separation problem, the kernel functions and regularized logistic regression are applied to design seismic classifiers. To efficiently design the classifier, P- and S-wave amplitude ratios on the time domain and spectral ratios on the frequency domain, which is converted by fast Fourier transform and short-time Fourier transform are selected as feature vectors. Furthermore, an adaptive synthetic sampling algorithm is adopted to enhance the classifier performance against the seismic data imbalance issue caused by the non-equivalent number of occurrences. The comparisons among classifiers are evaluated by the binary classification performance analysis methods. |
format | Online Article Text |
id | pubmed-8948764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89487642022-03-26 Imbalanced Seismic Event Discrimination Using Supervised Machine Learning Ahn, Hyeongki Kim, Sangkyeum Lee, Kyunghyun Choi, Ahyeong You, Kwanho Sensors (Basel) Article The discrimination between earthquakes and artificial explosions is a significant issue in seismic analysis to efficiently prevent and respond to seismic events. However, the discrimination of seismic events is challenging due to the low incidence rate. Moreover, the similarity between earthquakes and artificial explosions with a local magnitude derives a nonlinear data distribution. To improve the discrimination accuracy, this paper proposes machine-learning-based seismic discrimination methods—support vector machine, naive Bayes, and logistic regression. Furthermore, to overcome the nonlinear separation problem, the kernel functions and regularized logistic regression are applied to design seismic classifiers. To efficiently design the classifier, P- and S-wave amplitude ratios on the time domain and spectral ratios on the frequency domain, which is converted by fast Fourier transform and short-time Fourier transform are selected as feature vectors. Furthermore, an adaptive synthetic sampling algorithm is adopted to enhance the classifier performance against the seismic data imbalance issue caused by the non-equivalent number of occurrences. The comparisons among classifiers are evaluated by the binary classification performance analysis methods. MDPI 2022-03-13 /pmc/articles/PMC8948764/ /pubmed/35336390 http://dx.doi.org/10.3390/s22062219 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ahn, Hyeongki Kim, Sangkyeum Lee, Kyunghyun Choi, Ahyeong You, Kwanho Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title | Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title_full | Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title_fullStr | Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title_full_unstemmed | Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title_short | Imbalanced Seismic Event Discrimination Using Supervised Machine Learning |
title_sort | imbalanced seismic event discrimination using supervised machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948764/ https://www.ncbi.nlm.nih.gov/pubmed/35336390 http://dx.doi.org/10.3390/s22062219 |
work_keys_str_mv | AT ahnhyeongki imbalancedseismiceventdiscriminationusingsupervisedmachinelearning AT kimsangkyeum imbalancedseismiceventdiscriminationusingsupervisedmachinelearning AT leekyunghyun imbalancedseismiceventdiscriminationusingsupervisedmachinelearning AT choiahyeong imbalancedseismiceventdiscriminationusingsupervisedmachinelearning AT youkwanho imbalancedseismiceventdiscriminationusingsupervisedmachinelearning |