Cargando…

Regulation of Gene Expression of phiEco32-like Bacteriophage 7-11

Salmonella enterica serovar Newport bacteriophage 7-11 shares 41 homologous ORFs with Escherichia coli phage phiEco32, and both phages encode a protein similar to bacterial RNA polymerase promoter specificity σ subunit. Here, we investigated the temporal pattern of 7-11 gene expression during infect...

Descripción completa

Detalles Bibliográficos
Autores principales: Lavysh, Daria, Mekler, Vladimir, Klimuk, Evgeny, Severinov, Konstantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948821/
https://www.ncbi.nlm.nih.gov/pubmed/35336962
http://dx.doi.org/10.3390/v14030555
Descripción
Sumario:Salmonella enterica serovar Newport bacteriophage 7-11 shares 41 homologous ORFs with Escherichia coli phage phiEco32, and both phages encode a protein similar to bacterial RNA polymerase promoter specificity σ subunit. Here, we investigated the temporal pattern of 7-11 gene expression during infection and compared it to the previously determined transcription strategy of phiEco32. Using primer extension and in vitro transcription assays, we identified eight promoters recognized by host RNA polymerase holoenzyme containing 7-11 σ subunit SaPh711_gp47. These promoters are characterized by a bipartite consensus, GTAAtg-(16)-aCTA, and are located upstream of late phage genes. While dissimilar from single-element middle and late promoters of phiEco32 recognized by holoenzymes formed by the phi32_gp36 σ factor, the 7-11 late promoters are located at genome positions similar to those of phiEco32 middle and late promoters. Two early 7-11 promoters are recognized by the RNA polymerase holoenzyme containing the host primary σ(70) factor. Unlike the case of phiEco32, no shut-off of σ(70)-dependent transcription is observed during 7-11 infection and there are no middle promoters. These differences can be explained by the fact that phage 7-11 does not encode a homologue of phi32_gp79, an inhibitor of host and early phage transcription and an activator of transcription by the phi32_gp36-holoenzyme.