Cargando…
Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.)
Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948850/ https://www.ncbi.nlm.nih.gov/pubmed/35328700 http://dx.doi.org/10.3390/ijms23063279 |
_version_ | 1784674751952715776 |
---|---|
author | Feng, Guangyan Xiao, Pengqing Wang, Xia Huang, Linkai Nie, Gang Li, Zhou Peng, Yan Li, Dandan Zhang, Xinquan |
author_facet | Feng, Guangyan Xiao, Pengqing Wang, Xia Huang, Linkai Nie, Gang Li, Zhou Peng, Yan Li, Dandan Zhang, Xinquan |
author_sort | Feng, Guangyan |
collection | PubMed |
description | Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K(+) (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage. |
format | Online Article Text |
id | pubmed-8948850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89488502022-03-26 Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) Feng, Guangyan Xiao, Pengqing Wang, Xia Huang, Linkai Nie, Gang Li, Zhou Peng, Yan Li, Dandan Zhang, Xinquan Int J Mol Sci Article Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K(+) (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage. MDPI 2022-03-18 /pmc/articles/PMC8948850/ /pubmed/35328700 http://dx.doi.org/10.3390/ijms23063279 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feng, Guangyan Xiao, Pengqing Wang, Xia Huang, Linkai Nie, Gang Li, Zhou Peng, Yan Li, Dandan Zhang, Xinquan Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title | Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title_full | Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title_fullStr | Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title_full_unstemmed | Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title_short | Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass (Lolium Multiflorum L.) |
title_sort | comprehensive transcriptome analysis uncovers distinct expression patterns associated with early salinity stress in annual ryegrass (lolium multiflorum l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948850/ https://www.ncbi.nlm.nih.gov/pubmed/35328700 http://dx.doi.org/10.3390/ijms23063279 |
work_keys_str_mv | AT fengguangyan comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT xiaopengqing comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT wangxia comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT huanglinkai comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT niegang comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT lizhou comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT pengyan comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT lidandan comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml AT zhangxinquan comprehensivetranscriptomeanalysisuncoversdistinctexpressionpatternsassociatedwithearlysalinitystressinannualryegrassloliummultifloruml |