Cargando…
The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit
Background and Objectives: Traditional assessment of the readiness for the weaning from the mechanical ventilator (MV) needs respiratory parameters in a spontaneous breath. Exempted from the MV disconnecting and manual measurements of weaning parameters, a prediction model based on parameters from M...
Autores principales: | Cheng, Kuang-Hua, Tan, Mei-Chu, Chang, Yu-Jen, Lin, Cheng-Wei, Lin, Yi-Han, Chang, Tzu-Min, Kuo, Li-Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949015/ https://www.ncbi.nlm.nih.gov/pubmed/35334536 http://dx.doi.org/10.3390/medicina58030360 |
Ejemplares similares
-
Emerging modes of ventilation in the intensive care unit
por: Stewart, N.I., et al.
Publicado: (2011) -
Intensive Care Unit-Acquired Bacteremia in Mechanically Ventilated Patients: Clinical Features and Outcomes
por: Ko, Hsin-Kuo, et al.
Publicado: (2013) -
Explainable Machine Learning to Predict Successful Weaning of Mechanical Ventilation in Critically Ill Patients Requiring Hemodialysis
por: Lin, Ming-Yen, et al.
Publicado: (2023) -
A narrative review of advanced ventilator modes in the pediatric intensive care unit
por: Miller, Andrew G., et al.
Publicado: (2021) -
Feasibility and Safety of Transbronchial Lung Cryobiopsy for Diagnosis of Acute Respiratory Failure with Mechanical Ventilation in Intensive Care Unit
por: Chang, Chih-Hao, et al.
Publicado: (2022)