Cargando…
FILM: Filtering and Machine Learning for Malware Detection in Edge Computing
Machine learning with static-analysis features extracted from malware files has been adopted to detect malware variants, which is desirable for resource-constrained edge computing and Internet-of-Things devices with sensors; however, this learned model suffers from a misclassification problem becaus...
Autores principales: | Kim, Young Jae, Park, Chan-Hyeok, Yoon, MyungKeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949034/ https://www.ncbi.nlm.nih.gov/pubmed/35336322 http://dx.doi.org/10.3390/s22062150 |
Ejemplares similares
-
Evaluation of Machine Learning Algorithms for Malware Detection
por: Akhtar, Muhammad Shoaib, et al.
Publicado: (2023) -
An Insight into the Machine-Learning-Based Fileless Malware Detection
por: Khalid, Osama, et al.
Publicado: (2023) -
Malware detection
por: Nandal, Priyanka
Publicado: (2017) -
Lightweight On-Device Detection of Android Malware Based on the Koodous Platform and Machine Learning
por: Krzysztoń, Mateusz, et al.
Publicado: (2022) -
A Study on the Application of Distributed System Technology-Guided Machine Learning in Malware Detection
por: Jin, Shi, et al.
Publicado: (2022)