Cargando…
MicroRNA-181a Regulates the Proliferation and Differentiation of Hu Sheep Skeletal Muscle Satellite Cells and Targets the YAP1 Gene
MicroRNA (miRNA) is of great importance to muscle growth and development, including the regulation of the proliferation and differentiation of skeletal muscle satellite cells (SMSCs). In our research group’s previous study, we found that miR-181a is differentially expressed in the longissimus dorsi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949050/ https://www.ncbi.nlm.nih.gov/pubmed/35328074 http://dx.doi.org/10.3390/genes13030520 |
Sumario: | MicroRNA (miRNA) is of great importance to muscle growth and development, including the regulation of the proliferation and differentiation of skeletal muscle satellite cells (SMSCs). In our research group’s previous study, we found that miR-181a is differentially expressed in the longissimus dorsi muscle of Hu sheep at different stages. We speculated that miR-181a may participate in the growth and development process of Hu sheep. To understand the mechanism of miR-181a regulating the growth and development of Hu sheep skeletal muscle, we extracted skeletal muscle satellite cells from the longissimus dorsi muscle of 3-month-old Hu sheep fetuses and performed a series of experiments. Our results showed that miR-181a suppressed SMSCs’ proliferation using QRT-PCR, Western blot, CCK-8, EDU, and Flow cytometry cycle tests. In addition, QRT-PCR, Western blot, and immunofluorescence indicated that miR-181a facilitated the differentiation of SMSCs. Then, we used dual-luciferase reporter gene detection, QRT-PCR, and Western blot to find that the Yes1-related transcription regulator (YAP1) is the target gene of miR-181a. Our study supplies a research basis for understanding the regulation mechanism of miR-181a on the growth of Hu sheep skeletal muscle. |
---|