Cargando…
Performance Degradation Prediction Using LSTM with Optimized Parameters
Predicting the degradation of mechanical components, such as rolling bearings is critical to the proper monitoring of the condition of mechanical equipment. A new method, based on a long short-term memory network (LSTM) algorithm, has been developed to improve the accuracy of degradation prediction....
Autores principales: | Hu, Yawei, Wei, Ran, Yang, Yang, Li, Xuanlin, Huang, Zhifu, Liu, Yongbin, He, Changbo, Lu, Huitian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949053/ https://www.ncbi.nlm.nih.gov/pubmed/35336579 http://dx.doi.org/10.3390/s22062407 |
Ejemplares similares
-
HKF-SVR Optimized by Krill Herd Algorithm for Coaxial Bearings Performance Degradation Prediction
por: Liu, Fang, et al.
Publicado: (2020) -
A novel RF-CEEMD-LSTM model for predicting water pollution
por: Ruan, Jinlou, et al.
Publicado: (2023) -
Performance Degradation Modeling and Its Prediction Algorithm of an IGBT Gate Oxide Layer Based on a CNN-LSTM Network
por: Wang, Xin, et al.
Publicado: (2023) -
Parameter prediction of coiled tubing drilling based on GAN–LSTM
por: Zhang, Wanxing, et al.
Publicado: (2023) -
Degradation Tendency Prediction for Pumped Storage Unit Based on Integrated Degradation Index Construction and Hybrid CNN-LSTM Model
por: Zhou, Jianzhong, et al.
Publicado: (2020)