Cargando…

Novel Composite Nitride Nanoceramics from Reaction-Mixed Nanocrystalline Powders in the System Aluminum Nitride AlN/Gallium Nitride GaN/Titanium Nitride TiN (Al:Ga:Ti = 1:1:1)

A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanocera...

Descripción completa

Detalles Bibliográficos
Autores principales: Drygas, Mariusz, Lejda, Katarzyna, Janik, Jerzy F., Stelmakh, Svitlana, Palosz, Bogdan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949097/
https://www.ncbi.nlm.nih.gov/pubmed/35329651
http://dx.doi.org/10.3390/ma15062200
Descripción
Sumario:A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanoceramics. The synthesis starts with a 4 h reflux in hexane of the mixture of the respective metal dimethylamides, which is followed by hexane evacuation, and reactions of the residue in liquid ammonia at −33 °C to afford a mixed metal amide/imide precursor. Plausible equilibration towards a bimetallic Al/Ga-dimethylamide compound upon mixing of the solutions of the individual metal-dimethylamide precursors containing dimeric {Al[N(CH(3))(2)](3)}(2) and dimeric {Ga[N(CH(3))(2)](3)}(2) is confirmed by (1)H- and (13)C{H}-NMR spectroscopy in C(6)D(6) solution. The precursor is pyrolyzed under ammonia at 800 and 950 °C yielding, respectively, two different reaction-mixed composite nitride nanopowders. The latter are subjected to no-additive high-pressure and high-temperature sintering under conditions either conservative for the initial powder nanocrystallinity (650 °C, 7.7 GPa) or promoting crystal growth/recrystallization and, possibly, solid solution formation via reactions of AlN and GaN towards Al(0.5)Ga(0.5)N (1000 and 1100 °C, 7.7 GPa). The sintered composite pellets show moderately high mechanical hardness as determined by the Vicker’s method. The starting nanopowders and resulting nanoceramics are characterized by powder XRD, Raman spectroscopy, and SEM/EDX. It is demonstrated that, in addition to the multi-nitride composite nanoceramics of hexagonal AlN/hexagonal GaN/cubic TiN, under specific conditions the novel composite nanoceramics made of hexagonal Al(0.5)Ga(0.5)N and cubic TiN can be prepared.