Cargando…
Effectiveness of Artificial Neural Networks for Solving Inverse Problems in Magnetic Field-Based Localization
Recently, indoor localization has become an active area of research. Although there are various approaches to indoor localization, methods that utilize artificially generated magnetic fields from a target device are considered to be the best in terms of localization accuracy under non-line-of-sight...
Autor principal: | Sasaki, Ai-ichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949140/ https://www.ncbi.nlm.nih.gov/pubmed/35336410 http://dx.doi.org/10.3390/s22062240 |
Ejemplares similares
-
Artificial Neural Networks Solve Musical Problems With Fourier Phase Spaces
por: Dawson, Michael R. W., et al.
Publicado: (2020) -
Big in Japan: Regularizing Networks for Solving Inverse Problems
por: Schwab, Johannes, et al.
Publicado: (2019) -
Superconducting Magnets for the LHC: Conception, Optimization and Inverse Problem Solving
por: Russenschuck, Stephan
Publicado: (1997) -
Superconducting magnets for the LHC-conception, optimization and inverse problem solving
por: Russenschuck, Stephan
Publicado: (1998) -
The "inverse problem" to the evaluation of the magnetic fields
por: Caspi, S, et al.
Publicado: (1995)