Cargando…
Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome
Cerebrovascular events, notably acute ischemic strokes (AIS), have been reported in the setting of novel coronavirus disease (COVID-19) infection. Commonly regarded as cryptogenic, to date, the etiology is thought to be multifactorial and remains obscure; it is linked either to a direct viral invasi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949282/ https://www.ncbi.nlm.nih.gov/pubmed/35328506 http://dx.doi.org/10.3390/ijms23063085 |
_version_ | 1784674858020372480 |
---|---|
author | Che Mohd Nassir, Che Mohd Nasril Zolkefley, Mohd K. I. Ramli, Muhammad Danial Norman, Haziq Hazman Abdul Hamid, Hafizah Mustapha, Muzaimi |
author_facet | Che Mohd Nassir, Che Mohd Nasril Zolkefley, Mohd K. I. Ramli, Muhammad Danial Norman, Haziq Hazman Abdul Hamid, Hafizah Mustapha, Muzaimi |
author_sort | Che Mohd Nassir, Che Mohd Nasril |
collection | PubMed |
description | Cerebrovascular events, notably acute ischemic strokes (AIS), have been reported in the setting of novel coronavirus disease (COVID-19) infection. Commonly regarded as cryptogenic, to date, the etiology is thought to be multifactorial and remains obscure; it is linked either to a direct viral invasion or to an indirect virus-induced prothrombotic state, with or without the presence of conventional cerebrovascular risk factors. In addition, patients are at a greater risk of developing long-term negative sequelae, i.e., long-COVID-related neurological problems, when compared to non-COVID-19 stroke patients. Central to the underlying neurobiology of stroke recovery in the context of COVID-19 infection is reduced angiotensin-converting enzyme 2 (ACE2) expression, which is known to lead to thrombo-inflammation and ACE2/angiotensin-(1–7)/mitochondrial assembly receptor (MasR) (ACE2/Ang-(1-7)/MasR) axis inhibition. Moreover, after AIS, the activated nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome may heighten the production of numerous proinflammatory cytokines, mediating neuro-glial cell dysfunction, ultimately leading to nerve-cell death. Therefore, potential neuroprotective therapies targeting the molecular mechanisms of the aforementioned mediators may help to inform rehabilitation strategies to improve brain reorganization (i.e., neuro-gliogenesis and synaptogenesis) and secondary prevention among AIS patients with or without COVID-19. Therefore, this narrative review aims to evaluate the mediating role of the ACE2/Ang- (1-7)/MasR axis and NLRP3 inflammasome in COVID-19-mediated AIS, as well as the prospects of these neuroinflammation mediators for brain repair and in secondary prevention strategies against AIS in stroke rehabilitation. |
format | Online Article Text |
id | pubmed-8949282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89492822022-03-26 Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome Che Mohd Nassir, Che Mohd Nasril Zolkefley, Mohd K. I. Ramli, Muhammad Danial Norman, Haziq Hazman Abdul Hamid, Hafizah Mustapha, Muzaimi Int J Mol Sci Review Cerebrovascular events, notably acute ischemic strokes (AIS), have been reported in the setting of novel coronavirus disease (COVID-19) infection. Commonly regarded as cryptogenic, to date, the etiology is thought to be multifactorial and remains obscure; it is linked either to a direct viral invasion or to an indirect virus-induced prothrombotic state, with or without the presence of conventional cerebrovascular risk factors. In addition, patients are at a greater risk of developing long-term negative sequelae, i.e., long-COVID-related neurological problems, when compared to non-COVID-19 stroke patients. Central to the underlying neurobiology of stroke recovery in the context of COVID-19 infection is reduced angiotensin-converting enzyme 2 (ACE2) expression, which is known to lead to thrombo-inflammation and ACE2/angiotensin-(1–7)/mitochondrial assembly receptor (MasR) (ACE2/Ang-(1-7)/MasR) axis inhibition. Moreover, after AIS, the activated nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome may heighten the production of numerous proinflammatory cytokines, mediating neuro-glial cell dysfunction, ultimately leading to nerve-cell death. Therefore, potential neuroprotective therapies targeting the molecular mechanisms of the aforementioned mediators may help to inform rehabilitation strategies to improve brain reorganization (i.e., neuro-gliogenesis and synaptogenesis) and secondary prevention among AIS patients with or without COVID-19. Therefore, this narrative review aims to evaluate the mediating role of the ACE2/Ang- (1-7)/MasR axis and NLRP3 inflammasome in COVID-19-mediated AIS, as well as the prospects of these neuroinflammation mediators for brain repair and in secondary prevention strategies against AIS in stroke rehabilitation. MDPI 2022-03-13 /pmc/articles/PMC8949282/ /pubmed/35328506 http://dx.doi.org/10.3390/ijms23063085 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Che Mohd Nassir, Che Mohd Nasril Zolkefley, Mohd K. I. Ramli, Muhammad Danial Norman, Haziq Hazman Abdul Hamid, Hafizah Mustapha, Muzaimi Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title | Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title_full | Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title_fullStr | Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title_full_unstemmed | Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title_short | Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome |
title_sort | neuroinflammation and covid-19 ischemic stroke recovery—evolving evidence for the mediating roles of the ace2/angiotensin-(1–7)/mas receptor axis and nlrp3 inflammasome |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949282/ https://www.ncbi.nlm.nih.gov/pubmed/35328506 http://dx.doi.org/10.3390/ijms23063085 |
work_keys_str_mv | AT chemohdnassirchemohdnasril neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome AT zolkefleymohdki neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome AT ramlimuhammaddanial neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome AT normanhaziqhazman neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome AT abdulhamidhafizah neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome AT mustaphamuzaimi neuroinflammationandcovid19ischemicstrokerecoveryevolvingevidenceforthemediatingrolesoftheace2angiotensin17masreceptoraxisandnlrp3inflammasome |