Cargando…
Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
Thousands of energy-aware sensors have been placed for monitoring in a variety of scenarios, such as manufacturing, control systems, disaster management, flood control and so on, requiring time-critical energy-efficient solutions to extend their lifetime. This paper proposes reinforcement learning (...
Autores principales: | Habeeb, Fawzy, Szydlo, Tomasz, Kowalski, Lukasz, Noor, Ayman, Thakker, Dhaval, Morgan, Graham, Ranjan, Rajiv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949606/ https://www.ncbi.nlm.nih.gov/pubmed/35336544 http://dx.doi.org/10.3390/s22062375 |
Ejemplares similares
-
IoT
por: Yarali, Abdulrahman
Publicado: (2018) -
Sazgar IoT: A Device-Centric IoT Framework and Approximation Technique for Efficient and Scalable IoT Data Processing
por: Yavari, Ali, et al.
Publicado: (2023) -
Situation-Aware IoT Data Generation towards Performance Evaluation of IoT Middleware Platforms
por: Mondal, Shalmoly, et al.
Publicado: (2022) -
Networking-Aware IoT Application Development
por: Bröring, Arne, et al.
Publicado: (2020) -
Building IoT Services for Aging in Place Using Standard-Based IoT Platforms and Heterogeneous IoT Products
por: Fattah, Sheik Mohammad Mostakim, et al.
Publicado: (2017)