Cargando…
Correction to “Generative Adversarial Networks for Crystal Structure Prediction”
Autores principales: | Kim, Sungwon, Noh, Juhwan, Gu, Geun Ho, Aspuru-Guzik, Alan, Jung, Yousung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949623/ https://www.ncbi.nlm.nih.gov/pubmed/35355815 http://dx.doi.org/10.1021/acscentsci.2c00218 |
Ejemplares similares
-
Generative Adversarial Networks for Crystal Structure
Prediction
por: Kim, Sungwon, et al.
Publicado: (2020) -
Machine-enabled inverse design of inorganic solid materials: promises and challenges
por: Noh, Juhwan, et al.
Publicado: (2020) -
Predicting potentially hazardous chemical reactions using an explainable neural network
por: Kim, Juhwan, et al.
Publicado: (2021) -
Exploring the Advantages
of Quantum Generative Adversarial
Networks in Generative Chemistry
por: Kao, Po-Yu, et al.
Publicado: (2023) -
Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions
por: Choi, Changhyeok, et al.
Publicado: (2021)