Cargando…
Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints
In remote sensing applications and medical imaging, one of the key points is the acquisition, real-time preprocessing and storage of information. Due to the large amount of information present in the form of images or videos, compression of these data is necessary. Compressed sensing is an efficient...
Autores principales: | Mahdaoui, Assia El, Ouahabi, Abdeldjalil, Moulay, Mohamed Said |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949665/ https://www.ncbi.nlm.nih.gov/pubmed/35336367 http://dx.doi.org/10.3390/s22062199 |
Ejemplares similares
-
Hybrid regularizers-based adaptive anisotropic diffusion for image denoising
por: Liu, Kui, et al.
Publicado: (2016) -
Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement
por: Leal, Esmeide, et al.
Publicado: (2020) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020) -
Sub-Diffraction Visible Imaging Using Macroscopic Fourier Ptychography and Regularization by Denoising
por: Li, Zhixin, et al.
Publicado: (2018) -
Calibration-Less Multi-Coil Compressed Sensing Magnetic Resonance Image Reconstruction Based on OSCAR Regularization
por: El Gueddari, Loubna, et al.
Publicado: (2021)