Cargando…
Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling
[Image: see text] Applications of machine learning (ML) to synthetic chemistry rely on the assumption that large numbers of literature-reported examples should enable construction of accurate and predictive models of chemical reactivity. This paper demonstrates that abundance of carefully curated li...
Autores principales: | Beker, Wiktor, Roszak, Rafał, Wołos, Agnieszka, Angello, Nicholas H., Rathore, Vandana, Burke, Martin D., Grzybowski, Bartosz A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949728/ https://www.ncbi.nlm.nih.gov/pubmed/35258973 http://dx.doi.org/10.1021/jacs.1c12005 |
Ejemplares similares
-
Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates
por: Schäfer, Philipp, et al.
Publicado: (2017) -
Heterocyclic Suzuki–Miyaura coupling reaction of metalla-aromatics and mechanistic analysis of site selectivity
por: Lin, Zuzhang, et al.
Publicado: (2023) -
Computer-generated “synthetic contingency” plans at times of logistics and supply problems: scenarios for hydroxychloroquine and remdesivir
por: Szymkuć, Sara, et al.
Publicado: (2020) -
Author Correction: Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates
por: Schäfer, Philipp, et al.
Publicado: (2018) -
Inhibition of (dppf)nickel-catalysed Suzuki–Miyaura cross-coupling reactions by α-halo-N-heterocycles
por: Cooper, Alasdair K., et al.
Publicado: (2021)