Cargando…
Reduction of Capacity Fading in High-Voltage NMC Batteries with the Addition of Reduced Graphene Oxide
Lithium-ion batteries for electric vehicles (EV) require high energy capacity, reduced weight, extended lifetime and low cost. EV manufacturers are focused on Ni-rich layered oxides because of their promising attributes, which include the ability to operate at a relatively high voltage. However, the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949820/ https://www.ncbi.nlm.nih.gov/pubmed/35329597 http://dx.doi.org/10.3390/ma15062146 |
Sumario: | Lithium-ion batteries for electric vehicles (EV) require high energy capacity, reduced weight, extended lifetime and low cost. EV manufacturers are focused on Ni-rich layered oxides because of their promising attributes, which include the ability to operate at a relatively high voltage. However, these cathodes, usually made with nickel–manganese–cobalt (NMC811), typically experience accelerated capacity fading when operating at a high voltage. In this research, reduced graphene oxide (rGO) is added to a NMC811 cathode material to improve the performance in cyclability studies. Batteries made with rGO/NMC811 cathodes showed a 17% improvement in capacity retention after 100 cycles of testing over a high-voltage operating window of 2.5–4.5 V. |
---|