Cargando…
Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan
Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rap...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949850/ https://www.ncbi.nlm.nih.gov/pubmed/35335538 http://dx.doi.org/10.3390/polym14061209 |
_version_ | 1784675002028654592 |
---|---|
author | Conejo-Cuevas, Guillermo Ruiz-Rubio, Leire Sáez-Martínez, Virginia Pérez-González, Raul Gartziandia, Oihane Huguet-Casquero, Amaia Pérez-Álvarez, Leyre |
author_facet | Conejo-Cuevas, Guillermo Ruiz-Rubio, Leire Sáez-Martínez, Virginia Pérez-González, Raul Gartziandia, Oihane Huguet-Casquero, Amaia Pérez-Álvarez, Leyre |
author_sort | Conejo-Cuevas, Guillermo |
collection | PubMed |
description | Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rapid gelation and tissue adhesion are required in order to use them for those therapeutic applications. In addition, biocompatibility and biodegradability are also mandatory. Accordingly, biopolymers, such as hyaluronic acid (HA) and chitosan (CHI), that have shown great potential for wound healing applications are excellent candidates due to their unique physiochemical and biological properties, such as moisturizing and antimicrobial ability, respectively. In this study, both biopolymers were modified by covalent anchoring of catechol groups, and the obtained hydrogels were characterized by studying, in particular, their tissue adhesiveness and film forming capacity for potential skin wound healing applications. Tissue adhesiveness was related to o-quinone formation over time and monitored by visible spectroscopy. Consequently, an opposite effect was observed for both polysaccharides. As gelation advances for HA-CA, it becomes more adhesive, while competitive reactions of quinone in CHI-CA slow down tissue adhesiveness and induce a detriment of the filmogenic properties. |
format | Online Article Text |
id | pubmed-8949850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89498502022-03-26 Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan Conejo-Cuevas, Guillermo Ruiz-Rubio, Leire Sáez-Martínez, Virginia Pérez-González, Raul Gartziandia, Oihane Huguet-Casquero, Amaia Pérez-Álvarez, Leyre Polymers (Basel) Article Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rapid gelation and tissue adhesion are required in order to use them for those therapeutic applications. In addition, biocompatibility and biodegradability are also mandatory. Accordingly, biopolymers, such as hyaluronic acid (HA) and chitosan (CHI), that have shown great potential for wound healing applications are excellent candidates due to their unique physiochemical and biological properties, such as moisturizing and antimicrobial ability, respectively. In this study, both biopolymers were modified by covalent anchoring of catechol groups, and the obtained hydrogels were characterized by studying, in particular, their tissue adhesiveness and film forming capacity for potential skin wound healing applications. Tissue adhesiveness was related to o-quinone formation over time and monitored by visible spectroscopy. Consequently, an opposite effect was observed for both polysaccharides. As gelation advances for HA-CA, it becomes more adhesive, while competitive reactions of quinone in CHI-CA slow down tissue adhesiveness and induce a detriment of the filmogenic properties. MDPI 2022-03-17 /pmc/articles/PMC8949850/ /pubmed/35335538 http://dx.doi.org/10.3390/polym14061209 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Conejo-Cuevas, Guillermo Ruiz-Rubio, Leire Sáez-Martínez, Virginia Pérez-González, Raul Gartziandia, Oihane Huguet-Casquero, Amaia Pérez-Álvarez, Leyre Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title | Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title_full | Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title_fullStr | Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title_full_unstemmed | Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title_short | Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan |
title_sort | spontaneous gelation of adhesive catechol modified hyaluronic acid and chitosan |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949850/ https://www.ncbi.nlm.nih.gov/pubmed/35335538 http://dx.doi.org/10.3390/polym14061209 |
work_keys_str_mv | AT conejocuevasguillermo spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT ruizrubioleire spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT saezmartinezvirginia spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT perezgonzalezraul spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT gartziandiaoihane spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT huguetcasqueroamaia spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan AT perezalvarezleyre spontaneousgelationofadhesivecatecholmodifiedhyaluronicacidandchitosan |