Cargando…
High-Resolution Representations Network for Single Image Dehazing
Deep learning-based image dehazing methods have made great progress, but there are still many problems such as inaccurate model parameter estimation and preserving spatial information in the U-Net-based architecture. To address these problems, we propose an image dehazing network based on the high-r...
Autores principales: | Han, Wensheng, Zhu, Hong, Qi, Chenghui, Li, Jingsi, Zhang, Dengyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949864/ https://www.ncbi.nlm.nih.gov/pubmed/35336428 http://dx.doi.org/10.3390/s22062257 |
Ejemplares similares
-
A Review of Remote Sensing Image Dehazing
por: Liu, Juping, et al.
Publicado: (2021) -
Online knowledge distillation network for single image dehazing
por: Lan, Yunwei, et al.
Publicado: (2022) -
Residual Spatial and Channel Attention Networks for Single Image Dehazing
por: Jiang, Xin, et al.
Publicado: (2021) -
Transformer-based progressive residual network for single image dehazing
por: Yang, Zhe, et al.
Publicado: (2022) -
Physical-model guided self-distillation network for single image dehazing
por: Lan, Yunwei, et al.
Publicado: (2022)