Cargando…
Study of Compatibility and Flame Retardancy of TPU/PLA Composites
In order to apply the rigid biodegradable PLA material for flexible toothbrush bristle products, in this paper, Poly(lactic acid) (PLA) and thermoplastic polyurethane elastomer (TPU) blends (TPU/PLA composites), with a mass ratio of 80:20, were prepared by the melt-blending method to achieve toughen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949938/ https://www.ncbi.nlm.nih.gov/pubmed/35329790 http://dx.doi.org/10.3390/ma15062339 |
Sumario: | In order to apply the rigid biodegradable PLA material for flexible toothbrush bristle products, in this paper, Poly(lactic acid) (PLA) and thermoplastic polyurethane elastomer (TPU) blends (TPU/PLA composites), with a mass ratio of 80:20, were prepared by the melt-blending method to achieve toughening modification. Infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and low-field nuclear magnetic resonance were used to investigate the effect of the compatibilizer, Maleic anhydride grafted polypropylene (PP-g-MAH), on the compatibility of the blends, and the effect of melamine on the flame retardant properties of the blends was further investigated. The results demonstrated that 3% PP-g-MAH had the best compatibility effect on PLA and TPU; the TPU/PLA composites have a better macromolecular motility and higher crystallization capacity in the amorphous regions through the physical and chemical action by using PP-g-MAH as a compatibilizer. By adding melamine as a flame retardant, the scorch wire ignition temperature of TPU/PLA composites can reach 830 °C, which was elevated by 80 °C compared with pure PLA; however, the flame retardant effect of melamine in a single system was not significant. Melamine acts as a flame retardant by absorbing heat through decomposition and diluting the combustible material by producing an inert gas. |
---|