Cargando…

Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients

Meropenem (MER) is widely used to treat complicated and serious infections. Therapeutic drug monitoring (TDM) provides a valid clinical tool to avoid suboptimal concentrations and dose–related adverse reactions. However, TDM seems to face challenges since the limited stability of MER in plasma makes...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Haiwei, Jiang, Yi, Wang, Shaomin, Cao, Haihuan, Li, Yanyan, Huang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949976/
https://www.ncbi.nlm.nih.gov/pubmed/35335353
http://dx.doi.org/10.3390/molecules27061991
Descripción
Sumario:Meropenem (MER) is widely used to treat complicated and serious infections. Therapeutic drug monitoring (TDM) provides a valid clinical tool to avoid suboptimal concentrations and dose–related adverse reactions. However, TDM seems to face challenges since the limited stability of MER in plasma makes transport difficult between clinics and laboratories. Dried plasma spot (DPS) sampling is an attractive but underutilized method for TDM that has the desired features of easy collection, storage, and transport, and overcomes known hematocrit (HCT) issues in dried blood spot (DBS) analysis. This study was designed to investigate a DPS–based liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for quantification of MER. The method was developed and validated for DPS and wet plasma samples. Calibration curves were linear (R(2) > 0.995) over the concentration range of 0.5–50 µg/mL. Overall accuracy and precision did not exceed 15% and no significant matrix effect was observed. MER has been more stable in DPS than in wet plasma samples. A comparison of DPS and wet plasma concentrations was assessed in 32 patients treated with MER. The results showed that there was no significant difference between the two methods. So the DPS method developed in this study is appropriate and practical for the monitor of MER in the daily clinical laboratory practice.