Cargando…
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
Brain–computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain’s electrical signals from the scalp surface area. However, due to the non-stationary nature of the EE...
Autores principales: | Wang, Xuying, Yang, Rui, Huang, Mengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950019/ https://www.ncbi.nlm.nih.gov/pubmed/35336418 http://dx.doi.org/10.3390/s22062241 |
Ejemplares similares
-
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
por: Zhu, Hao, et al.
Publicado: (2022) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
por: Dai, Mengxi, et al.
Publicado: (2018)