Cargando…
Molnupiravir Does Not Induce Mutagenesis in Host Lung Cells during SARS-CoV-2 Treatment
As SARS-CoV-2 continues to evolve and spread with the emergence of new variants, interest in small molecules with broad-spectrum antiviral activity has grown. One such molecule, Molnupiravir (MOV; other names: MK-4482, EIDD-2801), a ribonucleoside analogue, has emerged as an effective SARS-CoV-2 tre...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950025/ https://www.ncbi.nlm.nih.gov/pubmed/35342288 http://dx.doi.org/10.1177/11779322221085077 |
Sumario: | As SARS-CoV-2 continues to evolve and spread with the emergence of new variants, interest in small molecules with broad-spectrum antiviral activity has grown. One such molecule, Molnupiravir (MOV; other names: MK-4482, EIDD-2801), a ribonucleoside analogue, has emerged as an effective SARS-CoV-2 treatment by inducing catastrophic viral mutagenesis during replication. However, there are growing concerns as MOV’s potential to induce host DNA mutagenesis remains an open question. Analysis of RNA-seq data from SARS-CoV-2–infected MOV-treated golden hamster lung biopsies confirmed MOV’s efficiency in stopping SARS-CoV-2 replication. Importantly, MOV treatment did not increase mutations in the host lung cells. This finding calls for additional mutation calls on host biopsies from more proliferative tissues to fully explore MOV’s hypothesized mutagenic risk. |
---|