Cargando…
Multi-Filter Clustering Fusion for Feature Selection in Rotating Machinery Fault Classification
In the fault classification process, filter methods that sequentially remove unnecessary features have long been studied. However, the existing filter methods do not have guidelines on which, and how many, features are needed. This study developed a multi-filter clustering fusion (MFCF) technique, t...
Autores principales: | Mochammad, Solichin, Noh, Yoojeong, Kang, Young-Jin, Park, Sunhwa, Lee, Jangwoo, Chin, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950067/ https://www.ncbi.nlm.nih.gov/pubmed/35336363 http://dx.doi.org/10.3390/s22062192 |
Ejemplares similares
-
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery
por: Gao, Kangping, et al.
Publicado: (2021) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016) -
A New Fault Feature Extraction Method for Rotating Machinery Based on Multiple Sensors
por: Miao, Feng, et al.
Publicado: (2020)