Cargando…

Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges

Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers assoc...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Francisco, Pereira, Tania, Neves, Inês, Morgado, Joana, Freitas, Cláudia, Malafaia, Mafalda, Sousa, Joana, Fonseca, João, Negrão, Eduardo, Flor de Lima, Beatriz, Correia da Silva, Miguel, Madureira, António J., Ramos, Isabel, Costa, José Luis, Hespanhol, Venceslau, Cunha, António, Oliveira, Hélder P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950137/
https://www.ncbi.nlm.nih.gov/pubmed/35330479
http://dx.doi.org/10.3390/jpm12030480
_version_ 1784675068781002752
author Silva, Francisco
Pereira, Tania
Neves, Inês
Morgado, Joana
Freitas, Cláudia
Malafaia, Mafalda
Sousa, Joana
Fonseca, João
Negrão, Eduardo
Flor de Lima, Beatriz
Correia da Silva, Miguel
Madureira, António J.
Ramos, Isabel
Costa, José Luis
Hespanhol, Venceslau
Cunha, António
Oliveira, Hélder P.
author_facet Silva, Francisco
Pereira, Tania
Neves, Inês
Morgado, Joana
Freitas, Cláudia
Malafaia, Mafalda
Sousa, Joana
Fonseca, João
Negrão, Eduardo
Flor de Lima, Beatriz
Correia da Silva, Miguel
Madureira, António J.
Ramos, Isabel
Costa, José Luis
Hespanhol, Venceslau
Cunha, António
Oliveira, Hélder P.
author_sort Silva, Francisco
collection PubMed
description Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and “motivate” the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
format Online
Article
Text
id pubmed-8950137
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89501372022-03-26 Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges Silva, Francisco Pereira, Tania Neves, Inês Morgado, Joana Freitas, Cláudia Malafaia, Mafalda Sousa, Joana Fonseca, João Negrão, Eduardo Flor de Lima, Beatriz Correia da Silva, Miguel Madureira, António J. Ramos, Isabel Costa, José Luis Hespanhol, Venceslau Cunha, António Oliveira, Hélder P. J Pers Med Review Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and “motivate” the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers. MDPI 2022-03-16 /pmc/articles/PMC8950137/ /pubmed/35330479 http://dx.doi.org/10.3390/jpm12030480 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Silva, Francisco
Pereira, Tania
Neves, Inês
Morgado, Joana
Freitas, Cláudia
Malafaia, Mafalda
Sousa, Joana
Fonseca, João
Negrão, Eduardo
Flor de Lima, Beatriz
Correia da Silva, Miguel
Madureira, António J.
Ramos, Isabel
Costa, José Luis
Hespanhol, Venceslau
Cunha, António
Oliveira, Hélder P.
Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title_full Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title_fullStr Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title_full_unstemmed Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title_short Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges
title_sort towards machine learning-aided lung cancer clinical routines: approaches and open challenges
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950137/
https://www.ncbi.nlm.nih.gov/pubmed/35330479
http://dx.doi.org/10.3390/jpm12030480
work_keys_str_mv AT silvafrancisco towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT pereiratania towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT nevesines towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT morgadojoana towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT freitasclaudia towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT malafaiamafalda towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT sousajoana towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT fonsecajoao towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT negraoeduardo towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT flordelimabeatriz towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT correiadasilvamiguel towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT madureiraantonioj towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT ramosisabel towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT costajoseluis towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT hespanholvenceslau towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT cunhaantonio towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges
AT oliveirahelderp towardsmachinelearningaidedlungcancerclinicalroutinesapproachesandopenchallenges