Cargando…

Mechanical and Lubrication Properties of Double Network Ion Gels Obtained by a One-Step Process

Human joints support us to reduce the impact on our body and move them smoothly. As they are composed of gel-like structures, gel materials with soft and resilient properties are expected, as lubricants, to provide high efficiency and a long lifetime for mechanical parts. While double network gels i...

Descripción completa

Detalles Bibliográficos
Autores principales: Arafune, Hiroyuki, Watarai, Yuma, Kamijo, Toshio, Honma, Saika, Sato, Takaya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950215/
https://www.ncbi.nlm.nih.gov/pubmed/35329565
http://dx.doi.org/10.3390/ma15062113
Descripción
Sumario:Human joints support us to reduce the impact on our body and move them smoothly. As they are composed of gel-like structures, gel materials with soft and resilient properties are expected, as lubricants, to provide high efficiency and a long lifetime for mechanical parts. While double network gels including ionic liquids as swelling agents possess high mechanical strength and stable low friction under high temperature or vacuum, their fabrication process is complex and time-consuming. In this study, we applied one-pot synthesis to a double network ion gel (DNIG) to obtain a thin gel film by a simple coating method and examined its thermal, mechanical and tribological properties. The DNIG was obtained by one-pot synthesis (DNIG-1) combining polycondensation of tetraethoxysilane and radical polymerization of methyl methacrylate to form silica and poly(methyl methacrylate) as a 1st and 2nd network, respectively. Such obtained DNIG-1 was characterized and compared with DNIG obtained by a conventional two-step process (DNIG-2). Thermogravimetric analysis and the compressive stress–strain test showed high thermal stability and mechanical strength of DNIG-1. As friction at the glass/DNIG-1 interface showed high friction compared with that at glass/DNIG-2, various counterface materials were applied to examine their effect on the friction of DNIG-1. As SUS304/DNIG-1 showed much lower friction compared with glass/DNIG-1, the difference in the friction was presumably due to the different adsorption forces and compatibility between the materials.