Cargando…
Machine-Learning-Based Disease Diagnosis: A Comprehensive Review
Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges in developing the early diagnosis tool and effective treatment. Machine learning (ML)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950225/ https://www.ncbi.nlm.nih.gov/pubmed/35327018 http://dx.doi.org/10.3390/healthcare10030541 |
_version_ | 1784675089666539520 |
---|---|
author | Ahsan, Md Manjurul Luna, Shahana Akter Siddique, Zahed |
author_facet | Ahsan, Md Manjurul Luna, Shahana Akter Siddique, Zahed |
author_sort | Ahsan, Md Manjurul |
collection | PubMed |
description | Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges in developing the early diagnosis tool and effective treatment. Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how machine learning (ML) is being used to help in the early identification of numerous diseases. Initially, a bibliometric analysis of the publication is carried out using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in machine-learning-based disease diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, in this paper, we highlight key results and provides insight into future trends and opportunities in the MLBDD area. |
format | Online Article Text |
id | pubmed-8950225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89502252022-03-26 Machine-Learning-Based Disease Diagnosis: A Comprehensive Review Ahsan, Md Manjurul Luna, Shahana Akter Siddique, Zahed Healthcare (Basel) Review Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges in developing the early diagnosis tool and effective treatment. Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how machine learning (ML) is being used to help in the early identification of numerous diseases. Initially, a bibliometric analysis of the publication is carried out using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in machine-learning-based disease diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, in this paper, we highlight key results and provides insight into future trends and opportunities in the MLBDD area. MDPI 2022-03-15 /pmc/articles/PMC8950225/ /pubmed/35327018 http://dx.doi.org/10.3390/healthcare10030541 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Ahsan, Md Manjurul Luna, Shahana Akter Siddique, Zahed Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title | Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title_full | Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title_fullStr | Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title_full_unstemmed | Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title_short | Machine-Learning-Based Disease Diagnosis: A Comprehensive Review |
title_sort | machine-learning-based disease diagnosis: a comprehensive review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950225/ https://www.ncbi.nlm.nih.gov/pubmed/35327018 http://dx.doi.org/10.3390/healthcare10030541 |
work_keys_str_mv | AT ahsanmdmanjurul machinelearningbaseddiseasediagnosisacomprehensivereview AT lunashahanaakter machinelearningbaseddiseasediagnosisacomprehensivereview AT siddiquezahed machinelearningbaseddiseasediagnosisacomprehensivereview |