Cargando…

Improved Characteristics of CdSe/CdS/ZnS Core-Shell Quantum Dots Using an Oleylamine-Modified Process

CdSe/CdS with ZnS/ZnO shell quantum dots (QDs) are synthesized by a one-pot method with various oleylamine (OLA) contents. The crystal structures of the QDs were analyzed by X-ray diffractometry, which showed ZnS diffraction peaks. It was represented that the ZnS shell was formed on the surface of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Kai-Ping, Yeh, Yu-Cheng, Wu, Chung-Jui, Yen, Chao-Chun, Wuu, Dong-Sing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950307/
https://www.ncbi.nlm.nih.gov/pubmed/35335721
http://dx.doi.org/10.3390/nano12060909
Descripción
Sumario:CdSe/CdS with ZnS/ZnO shell quantum dots (QDs) are synthesized by a one-pot method with various oleylamine (OLA) contents. The crystal structures of the QDs were analyzed by X-ray diffractometry, which showed ZnS diffraction peaks. It was represented that the ZnS shell was formed on the surface of the CdSe/CdS core. Interestingly, QDs with a high OLA concentration exhibit diffraction peaks of ZnS/ZnO. As a result, the thermal stability of QDs with ZnS/ZnO shells exhibits better performance than those with ZnS shells. In addition, the photoluminescence intensity of QDs with ZnS/ZnO shells shows a relatively slow decay of 7.1% compared with ZnS shells at 85 °C/85% relative humidity aging test for 500 h. These indicate that QDs with different OLA modifications can form ZnS/ZnO shells and have good stability in a harsh environment. The emission wavelength of QDs can be tuned from 505 to 610 nm, suitable for micro-LED display applications.