Cargando…

Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases

The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus...

Descripción completa

Detalles Bibliográficos
Autores principales: Krzemińska, Agnieszka, Kwiatos, Natalia, Arenhart Soares, Franciela, Steinbüchel, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950311/
https://www.ncbi.nlm.nih.gov/pubmed/35328756
http://dx.doi.org/10.3390/ijms23063335
Descripción
Sumario:The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus bisporus as a model enzyme. Recently, 98% of human genome proteins were elucidated by AlphaFold. Herein, the AlphaFold structure of human tyrosinase and the previous model were compared. Moreover, tyrosinase-related proteins 1 and 2 were included, along with inhibition studies employing kojic and cinnamic acids. Peptides are widely studied for their inhibitory activity of skin-related enzymes. Cyanophycin is an amino acid polymer produced by cyanobacteria and is built of aspartic acid and arginine; arginine can be also replaced by other amino acids. A new set of cyanophycin-derived dipeptides was evaluated as potential inhibitors. Aspartate–glutamate showed the strongest interaction and was chosen as a leading compound for future studies.