Cargando…
Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces
Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950369/ https://www.ncbi.nlm.nih.gov/pubmed/35329678 http://dx.doi.org/10.3390/ma15062225 |
_version_ | 1784675124537982976 |
---|---|
author | Guo, Linna Zou, Ziang Smeets, Ralf Kluwe, Lan Hartjen, Philip Gosau, Martin Henningsen, Anders |
author_facet | Guo, Linna Zou, Ziang Smeets, Ralf Kluwe, Lan Hartjen, Philip Gosau, Martin Henningsen, Anders |
author_sort | Guo, Linna |
collection | PubMed |
description | Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP. |
format | Online Article Text |
id | pubmed-8950369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89503692022-03-26 Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces Guo, Linna Zou, Ziang Smeets, Ralf Kluwe, Lan Hartjen, Philip Gosau, Martin Henningsen, Anders Materials (Basel) Article Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP. MDPI 2022-03-17 /pmc/articles/PMC8950369/ /pubmed/35329678 http://dx.doi.org/10.3390/ma15062225 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Linna Zou, Ziang Smeets, Ralf Kluwe, Lan Hartjen, Philip Gosau, Martin Henningsen, Anders Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title | Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title_full | Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title_fullStr | Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title_full_unstemmed | Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title_short | Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces |
title_sort | attachment and osteogenic potential of dental pulp stem cells on non-thermal plasma and uv light treated titanium, zirconia and modified peek surfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950369/ https://www.ncbi.nlm.nih.gov/pubmed/35329678 http://dx.doi.org/10.3390/ma15062225 |
work_keys_str_mv | AT guolinna attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT zouziang attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT smeetsralf attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT kluwelan attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT hartjenphilip attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT gosaumartin attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces AT henningsenanders attachmentandosteogenicpotentialofdentalpulpstemcellsonnonthermalplasmaanduvlighttreatedtitaniumzirconiaandmodifiedpeeksurfaces |